Cinquin Lab

Is the somitogenesis clock really cell-autonomous? A coupled-oscillator model of segmentation

Cinquin O., J. Theor. Biol. 222(4), pp459-468 (2003)


A striking pattern of oscillatory gene expression, related to the segmentation process (somitogenesis), has been identified in chick, mouse, and zebrafish embryos. Somitogenesis displays great autonomy, and it is generally assumed in the literature that somitogenesis-related oscillations are cell-autonomous in chick and mouse. We point out in this article that there would be many biological reasons to expect some mechanism of coupling between cellular oscillators, and we present a model with such coupling, but which also has autonomous properties. Previous experiments can be re-interpreted in light of this model, showing that it is possible to reconcile both autonomous and non-autonomous aspects. We also show that experimental data, previously interpreted as supporting a purely negative-feedback model for the mechanism of the oscillations, is in fact more compatible with this new model, which relies essentially on positive feedback.